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ABSTRACT 

The purpose of this thesis is to incorporate the Global Positioning System (GPS) 

and Inertial Navigation System (INS), for the guidance of an unmanned aerial vehicle 

(UAV) seeking precise navigation in a Local Tangent Plane (LTP). By applying the 

Differential Positioning technique, GPS position data becomes more accurate. This 

position can then be referenced to a known location on the ground in order to give the 

aircraft's position in the Local Tangent Plane. 

The FOG-R UAV at the Naval Postgraduate School will be used for autonomous 

flight testing using a Texas Instruments TMS320C30 Digital Signal Processor (DSP). 

This DSP is hosted on an IBM compatible PC, and is controlled via Integrated System's 

AC 100 control system design and implementation software package. 

The GPS receiver used throughout this thesis is a Motorola PVT-6 OEM. Another 

identical GPS receiver is used as a reference station, thus providing the Differential 

capability. The objectives of this thesis are: the system must be able to accept current 

location from the GPS and convert it to LTP, display the LTP coordinates, numerically 

and graphically, and be able to easily change the origin coordinates. Finally, the achieved 

accuracy of the differential setup is examined. 
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I. INTRODUCTION 

Ever since the Global Positioning System (GPS) first became active, users have 

been attempting to make it more accurate and thus more useful. The civilian users only 

have access to a degraded signal with a nominal accuracy of one hundred meters, while 

the military has access to a signal that has an accuracy of about sixteen meters. By setting 

up a reference station at a known location, many of the errors in the civilian signal can be 

determined and thus a corrective signal can be sent out to all receivers within a 

geographical area. This is called differential GPS (DGPS) and its accuracy is easily 

within three meters. This level of accuracy makes it appealing to those who need precise 

navigation. However there are several problems even with DGPS: 1) Position 

information is updated only once a second, and thus can't keep up with large 

accelerations; 2) The signal is subject to temporary loss or degradation in accuracy for 

various reasons; and 3) The position still varies randomly within its "bubble" of 

accuracy. Due to all of these problems it is still necessary to integrate the DGPS inputs 

with the type of constant inputs found in an Inertial Measuring Unit (IMU). 

The primary goal of this project was to provide the vehicle's current position 

(using the DGPS) in a local tangent plane in a manner such that it could be used to 

determine the necessary flight path required in order to follow a precise track over the 

ground. This information could then be integrated with INS data in order to send a 

continuous signal to the flight path controller. This system needed to be able to: 



• Accept current location from the Differential Global Positioning System 
(DGPS) receiver and convert it to Local Tangent Plane (LTP) coordinates. 

• Easily accept new origin coordinates for the Local Tangent Plane, to 
allow the system to be utilized in an arbitrary location. 

• Display coordinates in the LTP in meters north, east, and down. 
• Provide a graphical representation of the flight path relative to the origin of the 

LTP. 

This could all be accomplished through the use of the MATRIXX Product Family 

of rapid prototyping software available from Integrated Systems Incorporated (ISI). This 

software utilizes a program called RealSim which uses a Graphical User Interface (GUI) 

to step the engineer through the design process. This thesis describes how these design 

requirements were met in the RealSim environment. 

The Unmanned Aerial Vehicle (UAV) used for this thesis was the FOG-R UAV, 

commonly called the "Frog." It was acquired from the TEXCOM Experimentation Center 

at Fort Hunter Liggett, CA. It has a ten foot wingspan, a twenty pound payload capability, 

and is equipped with a full avionics suite, including Inertial Measuring Unit (IMU), Global 

Positioning System (GPS), and air data sensors. It is controlled through the use of a Radio 

Frequency (RF) link that sends a Pulse Width Modulated (PWM) signal which drives the 

aircraft's actuators. One of these links was modified and connected to the controller on 

the ground so the aircraft could be flown by the AC 100 computer flight path controller 

system. A differential GPS was incorporated along with the requisite additional antennas 

to transmit and receive the correction signal to the GPS computed position. 



II. THE GLOBAL POSITIONING SYSTEM OVERVIEW 

In order to fully understand and evaluate the positioning information obtained by 

the GPS, its principles of operation will be discussed. The system consists of three major 

segments: 

• The space segment 

• The control segment 

• The user segment 

A.      THE SPACE SEGMENT 

The fully operational space segment consists of twenty-four satellites that are 

placed in six different orbital planes at an altitude of 10,898 nautical miles above the 

surface of the earth. Of these satellites, nine are Block II and fifteen are Block II A. Three 

of them are on-orbit spares. They are all in twelve hour orbits arranged such that 

anywhere from five to eight satellites are visible from any point on the surface of the 

earth at any given time. [Ref. 1] 

The information provided by the satellites to the users is sent to earth by 

means of two L-band carrier signals, LI (1575.42 MHZ) and L2 (1227.6 MHZ). The LI 

frequency carries the navigation message and the Standard Positioning System (SPS) 

code signals while the L2 frequency is used to measure the ionospheric delay by Precise 

Positioning System (PPS) equipped receivers. The navigation message is a 50 Hz signal 

consisting of data bits that describe the GPS satellite orbits, clock corrections, and other 

parameters. The Coarse Acquisition (C/A) code modulates the LI carrier phase and is the 



basis for the civil SPS. The P-code (Precise) modulates both the LI and the L2 carrier 

phases and is protected by encryption so that full positioning accuracy is denied to 

unauthorized users. Although all satellites are transmitting on the same frequency, they 

are each assigned their own unique C/A and P codes so that the GPS receivers can 

distinguish between them. 

In an ideal world, the satellites should stay right on their orbits as they travel 

around the earth; unfortunately, this is not the case since their orbits are disturbed by 

various forces. The most important ones are: the gravitational perturbation of the earth, 

solar and lunar gravity, solar radiation pressure, and various gravity anomalies. Therefore, 

there exists the need for a control center that closely follows each satellite's behavior and 

takes the required corrective actions when necessary. This is the task of the control 

segment. 

B.      THE CONTROL SEGMENT 

The control segment has the sole responsibility to make sure that the GPS 

satellites are in their proper orbit, functioning correctly, and transmitting the correct 

values of the navigational parameters. The GPS ground network consists of five active- 

tracking ground antennas and five passive-tracking monitor stations, located around the 

world. 

The active-tracking ground antennas actively track the GPS satellites, transmitting 

commands and navigation uploads, and recording telemetry over S-band links. The 

passive-tracking monitor stations passively track the L-band signals transmitted by the 

satellites to determine the vehicle's navigational data. 



All of the above data is collected at the Falcon Air Force Base, Colorado Springs, 

Colorado, where the master control station of the GPS control segment is located. The 

collected data is used as an input to a Kaiman Filter from which the orbital states of the 

space vehicles can be determined. New navigational parameters are then passed to the 

satellites via the S-band radio links. The master control station personnel are also 

responsible for maneuvering the satellites to keep them in their preassigned orbits. When 

a satellite's performance is inaccurate or a mechanical failure has occurred, the vehicle is 

considered "unhealthy" and a special warning is incorporated in its navigational message 

to warn the GPS users. 

With the whole GPS infrastructure perfectly working, the only remaining 

component required for a navigator to obtain a position fix is a GPS receiver which will 

receive, decode, and process the navigational data transmitted by the satellites. The user's 

end of the GPS, the GPS receiver, is referred to as the user segment. 

C.      THE USER SEGMENT 

The user segment is responsible for obtaining the navigational signals provided by 

the satellites and extracting the precise values of three dimensional position, velocity, and 

time. There are several types of receivers. They are classified by how many channels they 

have. 

Each separate channel is a radio receiver that can track one or more satellites. If it 

tracks one satellite, it is dedicated full time to that one satellite. If it tracks more than one 

satellite, it has to use a time sharing technique, that is, tracking each satellite sequentially 



for a specified amount of time. The time sharing technique yields poorer results and it 

was used by the very first receivers built. A typical number of separate channels for a 

modern receiver is six to twelve. 

There are two major observables that can be used by a receiver in order to 

determine its position. The first is the pseudo-range and the second is the carrier phase. 

Velocity can be computed several ways also. The validity of these values can be affected 

by several things: accuracy of measurements, errors, and the addition of a differential 

station. The following is a discussion of each of these elements. 

1. Pseudo-Range Navigation 

Each satellite timetags its transmissions so that when they are received by the 

receiver, the latter knows the transmission time. The receiver also knows the time that the 

transmission was received from its internal clock. The receiver software then extracts the 

time difference between transmission and reception, that is, the time it takes the signal to 

travel from the satellite to the receiver. Multiplying this time difference by the speed of 

light will yield the actual distance between the satellite and the receiver. 

Onboard the satellites, extremely precise and expensive atomic clocks keep track 

of GPS time. On the other end, the receivers carry relatively cheap clocks which are not 

very accurate. A one billionth of a second uncertainty in the time difference measurement 

multiplied by the speed of light yields a range uncertainty of one foot. So the receiver 

clock inaccuracy is an error that has to be taken care of during the range determination. 

The calculated range is called pseudo-range since it is not the actual range due to the 

receiver clock error. 



By decoding the satellite message, the GPS receiver can also obtain the satellite's 

position (ephemeris) in earth-centered earth-fixed coordinates. By doing this for four 

satellites it can solve the following set of equations and determine its position coordinates 

(x, y, z) and the receiver clock error. All positioning coordinates (x,y,z) are given in 

earth-centered earth-fixed coordinate system: 

*i =\/(*i -*)2 +(^1 -yf+(z, -z? +c *dt (2.1a) 

R2=sj(x2 -xf +(y2 -yf +(z2 -zf +c *dt (2.1b) 

R3 =J(x3 -xf +03 -yf+(z3 -zf+c*dt (2.1c) 

*4 =)l(x4 -x? +04 -yf+(Z4 ~z? +c *d* (2. Id) 

where Pv; is the pseudo-range, dt is the receiver clock error and c is the speed of light. The 

subscripts indicate the satellite being tracked. 

Now the position fix of the receiver, which is obtained in earth-centered 

earth-fixed coordinates, must be transformed to the user's preferred coordinate system. It 

should be noted that the above equations represent a very basic problem formulation. In 

real life, the receiver's software has to take care of many other factors that are involved in 

the problem solution (such as satellite clock offsets and ionospheric delays). In fact many 

of the problem parameters are obtained as states of a Kaiman filter, rather than as straight 

forward algebraic solutions. 



2. Carrier Phase 

Use of the carrier phase observable is a relatively new technique. When a GPS 

receiver acquires the signal of a satellite, it can measure the fractional part of a single 

cycle of the carrier wave. As every complete cycle represents distance equal to the 

wavelength of the carrier wave (20 cm for the LI frequency), the carrier phase observable 

can be translated to range information from the particular satellite. Of course we cannot 

determine a pseudo-range only from carrier phase measurements because it is impossible 

to know how many complete cycles there are between the satellite and the receiver 

without any other information. What we can do is track the carrier phase changes, and 

feed them into the Kaiman filter mentioned above to "smooth" pseudo-range estimates. 

3. Accuracy 

The accuracy of the Standard Positioning System is intentionally degraded by the 

Department of Defense (DOD) by modulating the position data with the Selective 

Availability (SA) code. According to the 1994 Federal Radionavigation Plan, the SPS 

signal has a predictable accuracy of 100 meters horizontal and 156 meters vertical. These 

are 95% accuracies, the value of two standard deviations of radial error. These values are 

not totally due to the SA coding on the signal; there are other errors added to the SA 

which add up to these figures. 

4. GPS Error Sources 

There are three categories of GPS errors: noise, bias, and blunders. The noise 

errors are the combined effect of PRN code noise (about 1 meter) and noise within the 

receivers (about 1 meter). 
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Bias errors have several causal factors. One is Selective Availability, which is the 

intentional degradation of the SPS signal by a time varying bias. SA was put into place by 

the DOD in order to limit the accuracy of GPS for non-U.S. military users. The C/A code 

is thus reduced from an accuracy of about 30 meters to a degraded accuracy of about 100 

meters. Some of the other bias sources are: satellite clock errors uncorrected by the 

Control Segment (about 1 meter), ephemeris data errors (about 1 meter), unmodeled 

Tropospheric delays (about 1 meter), unmodeled ionospheric delays (about 10 meters), 

and multipath (about lA meter). "Noise and bias errors combine, resulting in typical 

ranging errors of around fifteen meters for each satellite used in the position 

solution."[Ref. 1] 

Blunders can result in large errors on the magnitude of hundreds of kilometers and 

can come from a variety of sources. There are human errors such as Control Segment 

mistakes or the user choosing the wrong geodetic datum. Then there are receiver errors 

which can be either hardware or software related. Essentially, a blunder is a failure of 

some part of the total system to operate as designed. 

5. Geometric Dilution of Precision (GDOP) 

GDOP is not defined as an error but rather as a "factor" in the accuracy of the 

GPS data. GDOP is a measurement of the respective angles between the satellites and the 

user. It is defined as being inversely proportional to the volume of the shape described by 

the unit-vectors from the receiver to the satellites used in a position fix. Thus a large unit- 

vector-volume will produce a low value of GDOP which is good, while a poor GDOP 

will result when the angles from the receiver to the set of satellites used are small. 
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III. SETUP OVERVIEW 

For an in-depth discussion of each piece of the hardware and software utilized in 

this project see Chapter 3 of Ref. 2. 

There are two major sets of components associated with this thesis: 

• The airborne components 

• The ground components 

Each of these will be looked at for their contribution. 

A. AIRBORNE COMPONENTS 

The largest of these is quite obviously the Unmanned Aerial Vehicle (UAV) itself. 

The Frog is a high-wing, high-engine, tricycle gear aircraft with both forward and mid- 

fuselage payload sections. It is equipped for autonomous flight with an avionics suite. 

This suite consists of the following components: an IMU, air data sensors, and a Motorola 

PVT-6 DGPS receiver. These devices transmit their data to the ground station and receive 

the differential corrections via two spread spectrum RF links. In addition there is a Pulse 

Code Modulation (PCM) receiver that is used to drive the actuators on the control 

surfaces and the throttle. The Motorola PVT-6 receiver was mounted in the mid-fuselage 

section and connected to the antenna which was mounted on the top side of the 

empennage midway to the tail. 

B. GROUND COMPONENTS 

The majority of the equipment was kept on the ground for several reasons: space 

and weight restrictions on the aircraft, ease of operating and maintaining, and of course 
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necessity. The ground station handles all of the flight management functions and data 

collection. It consists of the following three components: 

• Sparc II Workstation: this computer contains the software package RealSim 
that is used to design, code, and implement a control algorithm. 

• Luggable PC: this computer contains the TIC30 digital processor, and the 
DSP_FLEX board that holds the IP_Modules. The IP_Modules are discussed in 
Ref. 2, Chapter 3, Part B. 

• Communications Box: this box houses various devices used to communicate 
with the UAV. 

The differential antenna had to be on the ground at a known location in order to 

provide an accurate reference point. Here it was connected to the second of the Motorola 

PVT-6 receivers which was housed in the communications box. The other items in this 

box were the following: two DGR-115 spread spectrum RF modems which were used to 

transmit and receive telemetry information, and a Futaba PCM transmitter which had 

been modified to give the computer the ability to control the aircraft. This 

communications box was then hooked up to the luggable PC via four ribbon cables from 

the four IP_Modules. This computer actually controlled the aircraft and received the 

aircraft data output. It was this data which was decoded and sent to the Sun workstation 

via a standard TCP/IP connection. Here it could be easily utilized by the RealSim 

software for viewing of the UAV's position and flight parameters. 

12 



IV. COORDINATE TRANSFORMATIONS 

In order to utilize the data from the GPS receiver, the data first needs to be 

converted to a more useful format. The data for latitude and longitude is received as 

milliseconds of degrees and it is most useful as meters north, east and down as defined by 

the LTP. 

Since the receiver puts out latitude and longitude in milliseconds of degrees, the 

first step is to convert this into degrees of latitude and longitude, the Geodetic Coordinate 

System. In order to do this, the milliseconds are divided by 3,600,000, the number of 

milliseconds per degree. 

The second step is to use a coordinate transformation to convert to a cartesian 

coordinate system called the Earth-Centered Earth-Fixed (ECEF) frame. (For a review of 

coordinate transformation matrices see Ref. 3.) In order to make this conversion, there are 

several other values which need to be known: h (altitude in meters) and N (the length of 

the ellipsoidal normal from the ellipsoidal surface to its intersection with the ECEF z-axis 

in meters). As shown in Chapter 2 of Ref. 3, N can be determined from the eccentricity 

factor (e), the local latitude(<j>), and the semi-major axis of the Earth ellipsoid (a). 

N= 
V(l-e2xsin2(cj>)) (4-1) 
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Using this information, and introducing longitude (A), one can then obtain the 

transformations from a geodetic to a cartesian representation of a position in the ECEF 

coordinate system as: 

x=(N+/z)cos((j>)cos(X) 

y=(JV+/z)cos(<j))sin(A) 

z=[iV(l-e2)+/*]sin((j)) 

(4.2a) 

(4.2b) 

(4.2c) 

Now the transformation from ECEF to LTP must be applied; however, the LTP 

cannot be defined without an origin so this point must also be resolved in ECEF. In order 

to determine location in the LTP, a vector can be built from this origin to the point by 

subtracting the point's x, y, and z coordinates from those of the origin. It is this 

difference vector which will then be converted to give LTP coordinates, by multiplying it 

with a rotation matrix — R, from ECEF to Tangent plane. This transformation will 

involve one rotation about the z-axis and one rotation about the y'-axis, which will result 

in an Up, East, North axis orientation. This will then be converted to a North, East, Down 

system with one more matrix multiplication. 

First the rotation about the z-axis is through the angle X and results in this matrix: 

cos(A)     sin(A)   0 

-sin(A)    cos(A)  0 

0 0       1 

(4.3) 
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The next rotation is about the new y-axis and is through the angle (j), resulting in: 

cos(<j))   0   sin((j)) 

0       1       0 

-sin((f))  0  cos((j>) 

(4.4) 

When these two are multiplied together they result in an Up, East, North {UEN} 

coordinate system defined by: 

cos((f))cos(A)    cos((j))sin(A)   sin((j>) 

-sin(/\.) cos(A) 0 

-sin((j>)cos(A)   -sin((j))sin(A)  cos((J)) 

(4.5) 

Since we desire a North, East, Down {NED} system (commonly used for aircraft 

applications), the above matrix must be multiplied by a matrix which can swap the first 

and last row and make the new last row the negative of the old first row. This is the 

required matrix 

(4.6) 

When the previous two matrices are multiplied together one comes up with the 

required transformation matrix R, which needs to multiply the position difference vector 

in order to complete the transformation from the ECEF coordinate system to the LTP 

system (T). 

0 0 1 

0 1 0 

-1 0 0 

(x , v , z)T =ER x (Ax , Av , Az), (4.7) 
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Here :ER = 

-sin((j))cos(A)   -sin((j))sin(A)   cos((J)) 

-sin(A) cos(A) 0 

-cos((J))cos(A)   -cos(c|))sin(A)   -sin(cj)) 

(4.8) 

4> = latitude of the origin,   X = longitude of the origin 

This will result in a three-dimensional vector describing the location of the aircraft 

in the Local Tangent Plane in meters from the origin. This particular rotation matrix 

results in a North, East, Down {NED} reference frame from the origin. 

These computations were implemented in the MATRIXX software package. First 

the code was written in XMATH in order to validate the equations, and then transferred 

to the SystemBuild environment. Here it was rewritten as a series of Superblocks so that 

it could be easily inserted into the already designed SystemBuild controller for the 

aircraft. In RealSim a Graphical User Interface (GUI) page was created in order to allow 

for easy editing of the origin point so that this controller can be used anywhere there is a 

known position on which to set the differential antenna. This GUI also allows the current 

location of the aircraft in the LTP to be viewed both numerically and graphically on two 

2-dimensional plots (x vs y, and y vs z). (See App. A) 
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V. CALIBRATION AND VALIDATION 

Calibration was carried out in order to determine the accuracy of this DGPS 

configuration and the validity of the equations and data. This was done prior to 

implementing the code into the controller in order to ensure that troubleshooting could be 

done in an expeditious manner. This chapter will deal with first the calibration and then 

the validation. 

A.      CALIBRATION 

The calibration was conducted in the parking lot of the Mechanical Engineering 

(ME) building on campus. In this parking lot are several markers for surveyed points 

placed by Dr. Clynch of the Oceanography Department. (See App. B) The differential 

receiver's antenna was placed over marker NPS-5005 for all of the data sets. 

There were four sets of data collected from a static position and two sets of 

moving data collected. The data collected from the stationary runs is summed up in Table 

5.1. The first two (#1 and #2) of the four stationary sets were taken with the aircraft co- 

located with the differential antenna. Each of these had a valid differential, three 

dimensional fix the entire time. The remaining two stationary sets (#3 and #4) were taken 

with the aircraft at position NPS-5003 and with the differential antenna remaining at 

position NPS-5005. These also had a valid differential, three dimensional fix. 

The data set collected with the antennas virtually on top of each other had a 

constant value with variations so small as to be insignificant (Figures 5.1 and 5.2). The 

two stationary sets taken at a distance (Figures 5.3 and 5.4) did have some deviation in 
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their values over time; however, the horizontal accuracy was still under 2 meters. The 

mean and standard deviation values here can be looked at in a variety of axes since the 

values start as Geodetic coordinates, are transformed to ECEF coordinates, and then 

converted to LTP coordinates. The errors that we are most interested in are those in the 

LTP, since this will be the coordinate system in which we are will be programming and 

monitoring the vehicle's flight. As the numbers show, the system is fairly accurate in the 

horizontal plane of this navigation frame and is slightly less accurate in the vertical plane 

of this navigation frame. This is to be expected since the errors are almost twice as bad 

vertically as opposed to horizontally for GPS. [Ref. 4] 

Run#l Run #2 Run #3 Run #4 

North sigma 1.465e-14 1.910e-14 1.527 1.477 

East sigma 1.776e-15 8.660e-15 1.477 1.558 

Down sigma 4.263e-14 1.776e-15 4.037 2.815 
Table 5.1 Values of deviation in LTP axes for stationary runs (meters). 

The values for the moving data sets are listed in Table 5.2. The standard deviation 

here was around one meter with a mean error from the path of less than 1.5 meters. The 

sample size for these measurements was small compared to the stationary (less than 100 

data points versus around 800 data points); however, the data does show that the system 

will maintain its accuracy while in motion and not necessarily degrade to an unacceptable 

status. Runs #5a and #6a (Figures 5.5 and 5.7) were conducted from point NPS-5005 to 

point NPS-5004, while runs #5b and #6b (Figures 5.6 and 5.8) were the return trip. To 

obtain this data, the UAV was pushed by hand between these two points. However, there 

was no line marked out on the ground and thus some additional errors could have been 
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induced. It can be noted that both of the run-a columns have a greater mean error than the 

run-b columns; part of this error was likely self-induced. The marker at point NPS-5004 

was not as visible as the differential antenna parked on top of point NPS-5005, and thus 

was more difficult to walk a straight line towards. Lesson learned - paint the lines on the 

ground so as not to induce extra errors. 

Run#5a Run#5b Run#6a Run#6b 

North sigma 1.301 0.720 1.065 1.596 

East sigma 0.876 0.520 1.157 0.820 

Down sigma 1.957 0.929 2.935 0.523 

Mean error 2.529 1.271 2.816 0.738 
Table 5.2 Values of deviation in LTP axes for non-stationary runs (meters). 

B.      VALIDATION 

In the validation phase, a program was written to compute the coordinate 

transformation from geodetic coordinates to ECEF coordinates. Prof. Clynch's data for 

the reference points in the Mechanical Engineering parking lot was run through this 

program "clynchck.ms" (see App. C), and compared to the values which he listed for the 

x, y, and z coordinates (see App. B). Once this conversion was validated, two points 

were then used to validate the code for the conversion from ECEF to LTP. One point was 

input as the origin and the other as an aircraft position, in order to check the LTP 

transformation and ensure that the proper distances and directions were being returned. 

All of the conversions matched with Dr. Clynch's down to the millimeter, at which point 

his numbers were rounded off. The LTP coordinates showed correlation to ± 1 millimeter 
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horizontally and vertically. This served to prove the accuracy of the program for both 

coordinate transformation and LTP calculation. These results can be seenin App. D. 
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VI. FLIGHT TEST 

A.  FLIGHT TEST SETUP 

In order to utilize the LTP data supplied by this project during a flight, there are 

two initial conditions which must be configured prior to takeoff. The coordinates for the 

origin of the LTP must be confirmed in both the RealSim software and in the coding for 

the DGPS receiver. Once all of the rest of the pre-flight setup has been completed then 

the following procedure can be used to ensure that the Local Tangent Plane position of 

the UAV will be computed correctly. All of the computations assume that the Differential 

antenna is the location of the origin of the LTP. 

In order to check the coordinates in the RealSim software one follows this 

procedure. From the GUI Master page select the GPSJLTP page and view the coordinates 

displayed for the latitude, longitude, and geoid height of the origin. If these coordinates 

are correct then the next step is to check the coordinates of the DGPS receiver; if they are 

not correct, then they need to be updated. This is accomplished by double clicking in the 

upper right hand corner of each of the three coordinate display boxes and thus opening up 

the data input menu for each of these. One of the selections will be to change the initial 

value of the box; this is where the old value will be shown. Delete this value and type in 

the new value. Select the "Done" option once the value is correct and then proceed to the 

next box. When all three values are correct, check the DGPS receiver. 

To change the values for the location of the DGPS receiver, which needs to be 

done in order to receive proper corrections for the LTP values, the luggable PC will be 
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used. At the main C prompt, type in "cd GPS40", then from that directory type "GPS." At 

the next prompt the user will be asked to enter a commport to be used; select commport 

2. Now for the position to be displayed enter "pos: 1". The next few steps are for actually 

entering the location information. The following command is found in Ref. 5 on page 36. 

From the GPS40 directory main page, type in the php (position-hold position) command, 

which will be the following:" php:xxx_xx_xx.xxx_jyyy_yy_jy.yyy_2zz.zzz_www" 

Where latitude is represented by the x, longitude by the y, height by the z, the w is for 

"GPS" or "MSL" depending on which type of height is being used, and the "_" represents 

a space. Latitude and Longitude both need to be entered as "deg_min_sec.thousandths of 

seconds" with the very first position being a "+" or "-" to indicate proper hemisphere. 

Height is entered in "meters.thousandths of meters." This format is not the same as the 

manual suggests. However, it was determined through trial and error that this is the 

format which needs to be used. 

B.      FLIGHTS AT CHUALAR 

For flights that take place at Chualar remote control (RC) airfield, which is where 

all flights so far have occurred, the LTP origin location is already entered in the 

appropriate places. Now all that remains is to ensure that the differential antenna is placed 

on top of the appropriate spot. 

There is a six inch aluminum disk, called a survey marker, cemented in to place 

on the ground in a location which has been surveyed to an accuracy of ±9 cm. This survey 

was accomplished with the help of Dr. Clynch and his GPS equipment. The disk is found 

by standing at the northwest corner of the awning, facing the runway and then measuring 
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off about 24 feet on a heading of 035 ° and looking down. The disk has been stamped 

'CHUALAR-1'. This is the spot over which the differential antenna should be placed. In 

the event that flights are conducted elsewhere and then resumed at Chualar, the 

coordinates for the location of the disk are given below: 

Latitude: 36.55020693 degrees 
Longitude:      -121.54329221 degrees 
Height, Geoid: -5.67 meters 

C.      FLIGHT TEST DATA 

During the flight testing conducted on 31 January 1997 at Chualar RC field, the 

pilot, Don Meeks, was asked to perform a circle in order to store this data for later 

analysis. This data was run through the LTP conversion program ('e2tang.ms' found in 

App. E) and was plotted (Figure 6.1 of App. A). As can be seen, he maintained a fairly 

constant circle of approximately 230-250 meters in diameter and deviated in altitude by 

only 34 meters over a period of almost 45 seconds. The graph of north vs. east (in Figure 

6.1) is one of the two 2-dimensional graphs which will be used for real-time display and 

analysis for future flights. It can be used to monitor flight testing parameters and thus 

enable more meaningful data collection and interpretation. 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

A.      CONCLUSIONS 

This thesis has met the primary goal of providing the UAV's current position 

(from DGPS) in a local tangent plane in a manner such that it could be used to determine 

the necessary flight path required to follow a precise track over the ground. 

This was done using the MATRIXX rapid prototyping software. The Interactive 

Animator (IA) was used to design a GUI in which the origin coordinates could be easily 

entered and/or changed. The IA page that was created also displays the UAV's real-time 

LTP position on two 2-dimensional graphs. 

These LTP coordinates are supplied by the RealSim coded transformation of the 

DGPS provided geodetic coordinates. This transformation has been validated by making 

multiple conversions on surveyed data points and comparing the output to the survey 

values. 

Finally, this portion of the controller has been tested in flight and has 

demonstrated the conversion to LTP coordinates and the real-time graphical 

representation of the flight-path in the local tangent plane. 

B.      RECOMMENDATIONS 

The next step would be to find a place with known coordinates for a line, like 

either the ME parking lot or the runway of Chualar field, and conducting multiple runs at 

various speeds and checking the accuracy of the data. This would help to determine if the 
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velocities at which the Frog is being flown will allow it the required accuracy to be flown 

by the AC100 system all the way to landing. A separate project would be the use of this 

transformation in complex trajectory programming and tracking in the LTP. 

26 



APPENDIX A. FIGURES 

Local Tangent Plane Navigation 
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Figure 4.1: Interactive Animation display page 
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Figure 5.1: LTP data for run #1, all vertical axes in meters 
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Figure 5.3: LTP data for run #3, all vertical axes in meters 
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Figure 5.4: LTP data for run #4, all vertical axes in meters 
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Figure 5.5: LTP data for run 5a, all vertical axes in meters 
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Figure 5.6: LTP data for run #6a, all vertical axes in meters 
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Figure 5.7: LTP data for run #5b, all vertical axes in meters 
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Figure 5.8: LTP data for run #6b, all vertical axes in meters 
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Figure 6.1: LTP graphs for flight test on 31 January, all distances in meters 
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APPENDIX B. PROFESSOR CLYNCH'S DATA 

Here is the list of coordinates obtained from Professor Clynch in the 
Oceanography Department. These points are all in the parking lot of the Mechanical 
Engineering building. 

NPS-5001 

Latitude: 36.594263825°       Longitude: -121.877218747° 
{ECEF} 
X: -2707.544794m    Y: -4353.710077m    Z: 3781.326527m 

Altitude: -19.368m 

NPS-5002 

Latitude: 36.594318186°       Longitude: -121.876852525° 
{ECEF} 
X: -2707.515098m    Y: -4353.724540m    Z: 3781.331555m 

Altitude: -19.058m 

NPS-5003 

Latitude: 36.594866908°       Longitude: -121.877366719° 
{ECEF} 
X: -2707.534563m    Y: -4353.668714m    Z: 3781.379829m 

Altitude: -20.088 

NPS-5004 

Latitude: 36.594590992°       Longitude: -121.877094053° 
{ECEF} 
X: -2707.523751m    Y: -4353.697529m    Z: 3781.355622m 

Altitude: -19.458 

NPS-5005 

Latitude: 36.594888269°       Longitude: -121.877237275° 
{ECEF} 
X: -2707.524045m    Y: -4353.673733m    Z: 3781.381822m 

Altitude: -19.938 
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LTP DATA FOR VARIOUS COMBINATIONS OF POINTS FROM PROF. 
CLYNCH 

(All distances are in meters, LTP is defined as {ENU}) 

Origin: 5001 Data point: 5002 
E: 32.770       N: 6.032 U: 0.310 

Origin: 5001 Data point: 5003 
E: -13.241       N: 66.924       U: -0.720 

Origin: 5002 Data point: 5004 
E:-21.612      N: 30.273       U: -0.400 

Origin: 5003 Data point: 5005 
E: 11.583        N: 2.370 U: 0.150 

Origin: 5004 Data point: 5005 
E: -12.816      N: 32.989       U: -0.480 

Origin: 5005 Data point: 5002 
E: 34.428        N: -63.262      U: 0.880 
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APPENDIX C. DATA VERIFICATION CODE 

The following XMATH code takes the surveyed latitude and longitude of two 
points in the Mechanical Engineering parking lot of the Naval Postgraduate School, and 
converts this to ECEF and LTP coordinates for verification of the equations to be used in 
the RealSim controller. 

# — clynchck.ms ~ 
# - This program is to be used to confirm the below 
# - equations by comparison with data from Prof. Cylnch. 
# - Using data points in ME parking lot from Prof. Clynch 

# ~ Here is the coordinate transformation matrix from ECEF to 
# - {t} = {UEN} 

# C = [ cos(phi)*cos(lambda)  cos(phi)*sin(lambda)   sin(phi); 
# -sin(lambda) cos(lambda) 0; 
# -sin(phi)*cos(lambda) -sin(phi)*sin(lambda) cos(phi)] 

# ~ This is the xmath clear command 
delete *.* 

# ~ Turn on the diary file called e2tang.dat ~ 
# set sessiondiary "e2tang.dat" 

# ~ This next section is for entering the origin in lat and Ion 
# ~ Altitude needs to be entered in meters in Geoid (Ellipsoidal) 
# -- height. 

#p0_lat = 36.594263825? 
#p0_lon = -121.877218747? 
#h= 13.51 

# -- This time use pt NPS 5001 as the origin. 
#p0_lat = 36.594263825 
#p0_lon =-121.877218747 
#h = -19.368 

# ~ Here is the data for pt NPS 5004 
pOJat = 36.594590992 
p0_lon =-121.877094053 
h =-19.458 
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# ~ Here is the data for pt NPS 5005 to be used as the origin. 
# pOJat = 36.594888269 
#p0_lon =-121.877237275 
#h = -19.938 

# ~ To get origin in radians, multiply degrees by (pi/180) 
p0_lon_r = p0_lon*0.01745 
p0_lat_r = p0_lat*0.01745 

# - Here the lat and Ion of the origin will be converted 
# — to ECEF coordinates {x,y,z}. 
sjphi = sin(pO_lat_r) 
c_phi = cos(p0_lat_r) 
sjambda = sin(pO_lon_r) 
cjambda = cos(p0_lon_r) 

# - W and 'Eps_sq' are conversion factors for a non-spherical 
# — Earth. "N is in meters. 
# - "a" is the semimajor axis of the Earth in meters 
Eps_sq = 0.00669437999013 
a-6378137 
den = (1 -(Eps_sq*(s_phi)A2))A0.5 
N = a/den 

pO_x = (N+h)*c_phi*c_lambda 
p0_y = (N+h)*c_phi*s_lambda 
p0_z = ((N*(l-Eps_sq))+h)*s_phi 

# ~ This section is for calculating position in LTP. 
# ~ Here is where the aircraft position will be fed in by the 
# — receiver as lat and Ion and alt and we will convert it to 
# - ECEF {xyz} 
#pt2_lat = 36.55020693 
#pt2_lon =-121.54329221 
#h2 = -5.67 

# - Here is the data for pt NPS 5002 
pt2_lat = 36.594318186 
pt2_lon =-121.876852525 
h2 =-19.058 

# - Here is the data for pt NPS 5003 
# pt2_lat = 36.594866908 
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#pt2_lon =-121.877366719 
# h2 = -20.088 

# ~ Here is the data for pt NPS 5004 
#pt2_lat = 36.594590992 
#pt2_lon =-121.877094053 
#h2 = -19.458 

# - Here is the data for pt NPS 5005 
#pt2_lat = 36.594888269 
# pt2_lon = -121.877237275 
#h2 = -19.938 

# ~ Now make necessary computations for pt2. 
pt2_lon_r = pt2_lon*0.01745 
pt2_lat_r = pt2_lat*0.01745 

s_phi2 = sin(pt2_lat_r) 
c_phi2 = cos(pt2_lat_r) 
s_lambda2 = sin(pt2_lon_r) 
c_lambda2 = cos(pt2_lon_r) 

pt2_x = (N+h2)*c_phi2*c_lambda2 
pt2_y = (N+h2)*c_phi2*s_lambda2 
pt2_z = ((N*(l-Eps_sq))+h2)*s_phi2 

# — Now to get the difference between the two points 
# --inECEF{xyz}. 

del_x = pt2_x - p0_x 
del_y = pt2_y - p0_y 
del_z = pt2_z - pOz 

del = [del_x; del_y; del_z] 

# - The angle Lambda is the same as the longitude, while the angle 
# ~ Phi is the same as the latitude, 

lambda = p0_lon_r 
phi = p0_lat_r 

# - Now we want to convert to a {NED} coordinate system. 
C = [ -sin(phi)*cos(lambda), -sin(phi)*sin(lambda), cos(phi); 

-sin(lambda), cos(lambda),        0; 
-cos(phi)*cos(lambda), -cos(phi)*sin(lambda), -sin(phi)] 
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# - The rotation matrix (C) times the delta {x,y,z} will give 
# ~ the aircraft's current position in the tangent plane in 
# — meters. 

NED = [C*del]'? 
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APPENDIX D. DATA TRANSFORMATION VERIFICATION 

Below is the result of running Prof. Clynch's ME parking lot coordinates through the 
program "Clynchck.ms". This program has the same coordinate transformation routine in it as is 
in the RealSim block diagram program implemented into the UAV controller. This was done in 
order to compare the resulting values to Prof. Clynch's values in Appendix C, and thus validate 
the algorithm. This was successfully accomplished. 

Each section will start with an origin point and a distant point to be converted to ECEF 
{x,y,z} and also to LTP {NED}. All latitude and longitude values are in degrees, while all ECEF 
and LTP values are in meters. 

- The origin is pt 5004, and pt2 is 5002 - 

pOJat = 36.59459099200000 

p0_lon=   -1.218770940530000e+002 

h =-19.45800000000000 

p0_x=  -2.707523751060266e+006 

P0_jy=   -4.353697528851314e+006 

p0_z=    3.781355622141596e+006 

pt2_lat = 36.59431818600000 

pt2_lon=  -1.218768525250000e+002 

h2 =-19.05800000000000 

pt2_x=   -2.707515139893124e+006 

pt2_y =   -4.353724607049335e+006 

pt2_z=   3.781331612821002e+006 

NED =-30.27349302602244 21.61242196167804 -0.49731272875636 

~ Here the origin is pt 5005 and pt2 is 5002 ~ 
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pOJat = 36.59488826900000 

pOJon =  -1.218772372750000e+002 

h =-19.93800000000000 

pO_x=  -2.707524044669156e+006 

pO_y =  -4.353673733355007e+006 

pO_z=   3.781381821735875e+006 

pt2_lat= 36.59431818600000 

pt2_lon= -1.218768525250000e+002 

h2 =-19.05800000000000 

pt2_x= -2.707515185012028e+006 

pt2_jy= -4.353724679601202e+006 

pt2_z= 3.78133167583433 le+006 

NED = -63.26254233972134 34.42822152785000 -1.08317434025619 

- pO is pt 5001 and pt2 is 5003 - 

pOJat = 36.59426382500000 

pO_lon=  -1.218772187470000e+002 

h = -19.36800000000000 

pO_x=  -2.707544694196697e+006 

pO_j=  -4.353710077013256e+006 

pO_z=   3.781326526895528e+006 

pt2_lat = 36.59486690800000 

pt2_lon=  -1.218773667190000e+002 
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h2 = -20.08800000000000 

pt2 x = -2.707534471734960e+006 

pt2jy = -4.353668566997226e+006 

pt2_z = 3.781379701332720e+006 

NED = 66.92464475696794 -13.24074221985020  0.93573232907061 

- Here pO is 5002 and pt2 is 5001 

pOJat = : 36.59431818600000 

pO_lon: 
=  -1.218768525250000e+002 

h = -19.05800000000000 

pO_x = -2.707515098488406e+006 

pO_y = -4.353724540469932e+006 

pO_z = 3.781331554994929e+006 

pt2_lat = = 36.59426382500000 

pt2_lon =  -1.218772187470000e+002 

h2 = -19.36800000000000 

pt2_x = -2.707544702447331 e+006 

pt2_y = -4.353710090280208e+006 

pt2_z = 3.781326538418272e+006 

NED = -6.03242469894091 -32.77031841760502   0.29067419837140 

- - pO is 5005 and pt2 is 5003 

pOJat = 36.59488826900000 

pO_lon = =  -1.218772372750000e+002 
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h =-19.93800000000000 

p0_x = -2.707524044669156e+006 

p0_y = -4.353673733355007e+006 

p0_z = 3.781381821735875e+006 

pt2_lat= 36.59486690800000 

pt2_lon= -1.218773667190000e+002 

h2 = -20.08800000000000 

pt2_x = -2.707534566509818e+006 

pt2_y= -4.353668719393558e+006 

pt2_z= 3.781379833696587e+006 

NED= -2.37044078542388-11.58283118250856 0.14238271532010 

- p0 is 5005 and pt2 is 5004 

pOJat = 36.59488826900000 

pO_lon= -1.218772372750000e+002 

h =-19.93800000000000 

pO_x= -2.707524044669156e+006 

p0_y = -4.353673733355007e+006 

pO_z= 3.781381821735875e+006 

pt2_lat = 36.59459099200000 

pt2_lon= -1.218770940530000e+002 

h2 =-19.45800000000000 

pt2_x= -2.707523796179318e+006 
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pt2_y = -4.353697601402736e+006 

pt2_z = 3.781355685155328e+006 

NED =-32.98907843753755 12.81575309481910 -0.58606205866278 
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APPENDIX E. COORDINATE TRANSFORMATION CODE 

This appendix contains the XMATH code used to verify the coordinate transformations 
and then implemented into the RealSim block diagram environment. This code will take output 
data from the AC 100 flight controller and transform the latitude, longitude, and geoid height 
coordinates to a Local Tangent Plane with a north, east, down orientation. 

# ~ e2tang.ms — 

# - This function converts a vector given in the ECEF coordinate 
# -- system into the tangent plane 
# 

# - Using data points in ME parking lot from Prof. Clynch 

# — This is the xmath clear command 
# delete *.* 
set format="long" 

# ~ Turn on the diary file called e2tang.dat ~ 
# set sessiondiary "run8b.dat" 

# - This next section is for entering the origin in lat and Ion 
# ~ Altitude needs to be entered in meters in Geoid (Ellipsoidal) 
# — height. 

# ~ Here is the data for pt NPS 5005 to be used as the origin. 

p0_lat = 36.594888269 
p0_lon =-121.877237275 
h =-19.938 

# — To get origin in radians, multiply degrees by (pi/180) 

p0_lon_r = p0_lon*(pi/l 80) 
p0_lat_r = p0_lat*(pi/l 80) 

# ~ Here the lat and Ion of the origin will be converted 
# -- to ECEF coordinates {x,y,z}. 

s_phi = sin(p0_lat_r) 
c_phi = cos(p0_lat_r) 
slambda = sin(p0_lon_r) 
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c_lambda = cos(pO_lon_r) 

# - 'N' and 'Eps_sq' are conversion factors for a non-spherical 
# - Earth. TST is in meters. 
# - "a' is the semimajor axis of the Earth in meters 

Eps_sq = 0.00669437999013 
a = 6378137 
den = (l-(Eps_sq*(s_phi)A2))A0.5 
N = a/den 

p0_x = (N+h)*c_phi*c_lambda? 
p0_y = (N+h)*cjphi*s_lambda? 
p0_z = ((N*(l-Eps_sq))+h)*s_phi? 

# - This section is for calculating position in LTP. 
# - Here is where the aircraft position will be fed in by the 
# - receiver as lat and Ion and alt and we will convert it to 
# -- ECEF {xyz} 

# - Use this section to feed in a string of stored data points 

# load "flight_test_rf_2.dat" 
# load "flight_test_rf_3.dat" 
# load "flight_test_rf_4.dat" 
# load "flight_test_rf_5.dat" 
# load "flight_test_rf_6.dat" 
# load "flight_test_rf_7.dat" 
# load Mflight_test_rf_8.dat" 
# load "flight_test_rf_9.dat" 
# load "flight_test_rf_10.dat" 
# load "flight_test_rf_14_ml.dat" 

# - Define the matrices which will be used to plot data from 

MED_meters = [] 
pt2_lat_vec = [] 
pt2_lon_vec = [] 
h2_vec = [] 
pt2_x_vec = [] 
pt2_y_vec = [] 
pt2_z_vec = [] 
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# 
i= 1 

- Set up loop to read in data and put into matrices 
1            X 

whik i i <= length(lat) 

# - convert deciseconds to degrees 

■ pt2_lat = lat(i)/36000 
pt2_lon = lon(i)/36000 
h2 = hei_gps(i) 

# - Now make necessary computations for pt2. 

pt2_lon_r = pt2_lon*(pi/l 80) 
pt2_lat_r = pt2_lat*(pi/180) 

s__phi2 = sin(pt2_lat_r) 
c_phi2 = cos(pt2_lat_r) 
s_lambda2 = sin(pt2_lon_r) 
c_lambda2 = cos(pt2_lon_r) 

den = (l-(Eps_sq*(s_phi2)A2))A0.5 
N = a/den 

pt2_x = (N+b2)*c_phi2*c lambda2 
pt2_y = (N+h2)*c_phi2*s_lambda2 
pt2_z = ((N*(l-Eps_sq))+h2)*s_phi2 

pt2_x_vec = [Pt2_x_vec;pt2_x] 
pt2_y_vec = [pt2__y_vec;pt2_y] 
pt2_z_vec = [pt2_z_vec;pt2_z] 

# 
# 

- Now to get the difference between the two points 
--inECEF{xyz}. 

del_x = pt2_x - p0_x 
del_y = pt2_y - p0_y 
del_z = pt2_z - p0_z 

del = [del_x; del_y; del_z] 

# 
# 

- The angle Lambda is the same as the longitude, while the angle 
-- Phi is the same as the latitude. 

51 



lambda = pO_lon_r 
phi = pO_lat_r 

# - Now we want to convert to a {NED} coordinate system. 

C = [ -sin(phi)*cos(lambda), -sin(phi)*sin(lambda), cos(phi); 
-sin(lambda), cos(lambda),        0; 
-cos(phi)*cos(lambda), -cos(phi)*sin(lambda), -sin(phi)] 

# - The rotation matrix (C) times the delta {x,y,z} will give 
# ~ the aircraft's current position in the tangent plane in 
# -- meters. 

NED = [C*del]' 
NED_meters = [NED_meters;NED] 
pt2_lat_vec = [pt2_lat_vec;pt2_lat] 
pt2_lon_vec = [pt2_lon_vec;pt2_lon] 
h2_vec = [h2_vec;h2] 

i = i+l 
endwhile 

# - Now to split the data into three groups. 

north = NED_meters(:, 1) 
east = NED_meters(:,2) 
down = NED_meters(:,3) 
# 
# - The following sigma and mean are only if the data is for 
# ~ a point, not a line. 
# 
# — First is lat and Ion 
lat_mean_pt = mean(pt2_lat_vec)? 
lat_sigmajpt = sqrt(variance(pt2_lat_vec))? 

lon_mean_pt = mean(pt2_lon_vec)? 
lon_sigma_pt = sqrt(variance(pt2_lon_vec))? 

alt_mean_pt = mean(h2_vec)? 
alt_sigma_pt = sqrt(variance(h2_vec))? 
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# « Now for x, y, z 

x_mean_pt = mean(pt2_x_vec)? 
x_sigma_pt = sqrt(variance(pt2_x_vec))? 

y_mean_pt = mean(pt2_y_vec)? 
y_sigma_pt = sqrt(variance(pt2_y_vec))? 

z_mean_pt = mean(pt2_z_vec)? 
z_sigma_pt = sqrt(variance(pt2_z_vec))? 

# -Now for NED 

north_mn_pt = mean(north)? 
north_sigma_pt = sqrt(variance(north))? 

east_mn__pt = mean(east)? 
east_sigma_pt = sqrt(variance(east))? 

down_mnjpt = mean(down)? 
down_sigma_pt = sqrt(variance(down))? 

# — Here are the various plots 

plotjl = plot(pt2_lat_vec,{rows=2,columns=2,title="lat vs time"}) 
plotjl = plot(pt2_lon_vec,{keep=plot_ll,graph_number=2,title-"lon vs time"}) 
plotjl = plot(h2_vec,{keep=plot_ll,graph_number=3, title="alt vs time"}) 
plotjl = plot(pt2Jat_vec,pt2Jon_vec,{keep=plotJl,graph_number=4,title="lat vs Ion"})? 

plot_ned = plot(norm,{rows=2,columns=2,title-'north vs time"}) 
plot_ned = plot(east,{keep=plot_ned,graph_number=2,title="east vs time"}) 
plot_ned = plot(down,{keep=plot_ned,graph_number=3,title="down vs time"}) 
plot_ned = plot(north,east,{keep==plot_ned,graph_number=4,title="north vs east"})? 

plot_neJl = plot(norm,east,{rows=l,columns=2,title-'north vs east"}) 
plot_neJl = plot(pt2Jat_vec,pt2Jon_vec,{keep=plot_neJl,graph_number=2,title-"lat vs 
Ion"})? 

plot_xyz = plot(pt2_x_vec,{rows=2,columns=2,title="x vs time"}) 
plot_xyz = plot(pt2_y_vec,{keep=plot_xyz,graph_number=2,title="y vs time"}) 
plot_xyz = plot(pt2_z_vec,{keep=plot_xyz,graph_number=3,title="z vs time"}) 
plot_xyz = plot(pt2_x_vec,pt2jy_vec,{keep=plot_xyz,graph_number=4,title="x vs y"})? 
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plot_3d = plot(norm,east,down,{rows=l,columns=2,title="north vs east vs down"}) 
plot_3d = plot(pt2_lat_vec,pt2_lon_vec,h2_vec,{keep=plot_3d,graph_number=2,title="lat vs Ion 
vs h"})? 

# 
# ~ Need to determine the mean and std deviation 
# — from a line between the 2 known inputs 
# — This is for lat and Ion 
# 

# - First divide straight line into same number of points 
# ~ as data has 
# - y is number of pts only need line going one way, not both. 
# -- v is starting data pt number, w is ending data pt number 

v = 45 
# w = 45 

w = length(h2_vec) 
z = (v:w) 
y = length(z) 
x = ones(y,l) 

ptA_x = pt2_x_vec(v) 
ptAjy = pt2_y_vec(v) 
ptA_z = pt2_z_vec(v) 

ptB_x = pt2_x_vec(w) 
ptB_y = pt2_y_vec(w) 
ptB_z = pt2_z_vec(w) 

del_x = (ptB_x - ptA_x)/(y-l) 
del_y = (ptBjy - ptAjy)/(y-l) 
del_z = (ptB_z - ptA_z)/(y-l) 

x_line = [] 
y_line = [] 
z_line = [] 

# 
# -- Now create evenly spaced points on the line 
# 
forj = l:y 

x_pt=ptA_x+del_x*(j-1) 
x_line = [x_line;xjpt] 
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y_pt=ptA_y+del_y * (j -1) 
yjine = [y_line;y_pt] 

z_pt=pt A_z+del_z * (j -1) 
z_line = [z_line;z_pt] 

endfor 

xdiff = pt2_x_vec(v:w) - x_line 
y_diff = pt2_y_vec(v:w) - y_line 
zdiff = pt2_z_vec(v:w) - z_line 

# ~ The following sigma and mean are only valid if the data 
# - is for a line and not for a point. 
# 
x_mean_path = mean(x_diff)? 
y_mean_path = mean(y_diff)? 
z_mean_path = mean(z_diff)? 

x_sigma_path = sqrt(variance(x_diff))? 
y_sigma_path = sqrt(variance(y_diff))? 
z_sigma_path = sqrt(variance(z_diff))? 
# 
# — Now for lat and Ion 
# 
ptAJat = pt2_lat_vec(v) 
ptA_lon = pt2_lon_vec(v) 
ptA_alt = h2_vec(v) 

ptBJat = pt2_lat_vec(w) 
ptB_lon = pt2_lon_vec(w) 
ptBalt = h2_vec(w) 

deljat = (ptBJat - ptA_lat)/(y-l) 
deljon = (ptBJon - ptA_lon)/(y-l) 
del_alt = (ptB_alt - ptA_alt)/(y-l) 

latjine = [] 
lon_line = [] 
altjine = [] 
# 
# - Now create evenly spaced points on the line 
# 
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forj = l:y 
lat_pt=ptA_lat+del_lat*ö-l) 
latline = [lat_line;latjpt] 

Ionjpt=pt A_lon+del_lon* (j -1) 
lon_line = [lon_line;lon_pt] 

alt_pt=ptA_alt+del_alt*(j-l) 
altjine = [alt_line;alt_pt] 

endfor 

lat_diff= ((lat(v:w))/36000) - latjine 
lon_diff = ((lon(v:w))/36000) - lonjine 
altdiff = h2_vec(v:w) - alt_line 

lat_mean_path = mean(lat_diff)? 
lon_mean_path = mean(lon_diff)? 
alt_mean_path = mean(alt_diff)? 

lat_sigma_path = sqrt(variance(lat_diff))? 
lon_sigma_path = sqrt(variance(lon_diff))? 
alt_sigma_path = sqrt(variance(alt_diff))? 

# — Now to develop sigma and mean for LTP 
# — Since line is out and back, we only need to look at 
# — one direction at a time. So 'y' will be turnaround 
# -pt. 

pt2A_n = north(v) 
pt2B_n = north(w) 

pt2A_e = east(v) 
pt2B_e = east(w) 

pt2A_d = down(v) 
pt2B_d = down(w) 

dist_ab_n = pt2B_n - pt2A_n 
dist_ab_e = pt2B_e - pt2A_e 
dist_ab_d = pt2B_d - pt2A_d 

deln_ab = dist_ab_n/(y-l) 
dele_ab = dist_ab_e/(y-l) 
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deld_ab = dist_ab_d/(y-l) 

n_line = [] 
e_line = [] 
djine = [] 

for k = 1 :y 
n_pt = pt2A_n + deln_ab*(k-l) 
e_pt = pt2A_e + dele_ab*(k-l) 
d_pt = pt2A_d + deld_ab*(k-l) 

n_line = [n_line;n_pt] 
e_line = [e_line;ejpt] 
d_line = [d_line;d_pt] 

endfor 

# ~ create vectors of the original data of the same 
# - length as the line I am trying to match 

n_vec = north([v: 1 :w]) 
e_vec = east([v: 1 :w]) 
d_vec = down([v: 1 :w]) 

n_diff = n_vec - n_line 
e_diff = e_vec - e_line 
d_diff = d_vec - d_line 
# 

# - Mean error and sigma for each of 3 directions in LTP 
# 

njmeanjpath = mean(n_diff)? 
e_mean_path = mean(e_diff)? 
djmeanjpath = mean(d_diff)? 

n_sigma_path = sqrt(variance(n_diff))? 
e_sigma_path = sqrt(variance(e_diff))? 
d_sigma__path = sqrt(variance(d_difi))? 

plot_vec = plot(n_vec,{rows=2,columns=2,title="north vs time"}) 
plot_vec = plot(n_vec,e_vec,{keep=plot_vec,graph_number=2,title="north vs east"}) 
plotjvec = plot(n_line,{keep=plot_vec,graph_number=3,title="line from A to B"})? 

plot_over = plot(n_line,e_line,{title="line vs data"}) 
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plot_over = plot(n_vec,e_vec,{keep==plot_over})? 

mag_vec = ((n_diff)A(2) + (e_diff)A(2) + (d_diff)A(2))A(.5) 
dist_ab_n = pt2B_n - pt2A_n 
dist_ab_e = pt2B_e - pt2A_e 
dist_ab_d = pt2B_d - pt2A_d 

unit_vec = [(dist_ab_n/mag_vec),(dist_ab_e/mag_vec),(dist_ab_d/mag_vec)]' 
diff_vec = [n_diff,e_diff,d_diff] 

# — Need to sum diffs and take norm in order to help in 
# — developing the 3-D sigma and mean which also require 
# — the unit vector of the straight line. 

line_mag = ((dist_ab_n)A(2) + (dist_ab_e)A(2) + (dist_ab_d)A(2))A(.5) 
unit_vec_n = dist_ab_n/line_mag 
unit_vec_e = dist_ab_e/line_mag 
unit_vec_d = dist_ab_d/line_mag 

unit_cross_pt = [] 
for k = 1 :y 

pt_vec = [n_diff(k); e_diff(k); d_diff(k)] 
unit_vec = [unit_yec_n, unit_vec_e, unit_vec_d] 

# 

# — To compute the cross product, use the skew symmetric matrix 
# ~ for 3-d_dist_from_line = unit_vec CROSS pt_vec 
# 

t = [0, -unit_vec_d, unit_vec_e; 
unit_vec_d, 0, -unit_vec_n; 
-unit_vec_e, unit_vec_n, 0] 

cross_prod = [t * (pt_vec)]' 
unit_crossjpt = [unit_cross_pt;cross__prod] 
k=k+l 

endfor 
unit_cross_pt 

# ~ Set up to take the norm of each of the pts(all 3 directions) 
# — in order to obtain a 3d mag of the error 

# -- mag_dist_vec will be a vector with the 3-d magnitude of the distance 
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# ~ from the data pts to the straight line, this allows for 
# — non-constant velocity. 

mag_dist_vec = [] 
for k = 1 :y 

mag_dist = ((unit_cross__pt(k,l))A(2) + (unit_crossjpt(k,2))A(2) + 
(unit_cross_pt(k,3))A(2))A(0.5) 

mag_dist_vec = [mag_dist_vec; mag_dist] 
k = k+l 

endfor 

mag_dist_vec? 
mean_3d = mean(mag_dist_vec)? 

sigma_3d = sqrt(variance(mag_dist_vec))? 

# - Don't forget to turn off the diary file 
# remove sessiondiary 
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